

UERJ O	Bibliografia
•	PETOVELLO, M. G. Satellite Positioning. ENGO 465 Lecture Notes. Department of Geomatics Engineering, University of Calgary, Winter 2013. Adaptado para a UERJ por FORTES, L. P. S., 2015
•	SÁNCHEZ, L. Invitación a la realización del Sistema de Referencia Internacional de Alturas (IHRS) en la Región SIRGAS. Reunión del Consejo Directivo de SIRGAS, Quito, 2016
•	SEEBER, G. Satellite Geodesy Foundations, Methods, and Applications . Walter de Gruyer, 1993
•	SIRGAS. Sistema de Referencia Geocéntrico para las Américas. http://www.sirgas.org
•	TAKASU, T. RTKLIB ver. 2.4.2 Manual . http://www.rtklib.com/prog/manual_ 2.4.2.pdf
•	TORGE, W. Geodesy – An Introduction. Walter de Gruyter & Co. 1991
•	TRIMBLE. GNSS Planning Online. http://www.trimble.com/GNSSPlanningOnline/#/ Settings
•	VANICEK, P. Report on Geocentric and Geodetic Datums. University of New Brunswick, Fredericton, 1975. http://www2.unb.ca/gge/Pubs/TR32.pdf
•	VANICEK, P.; E.J. KRAKIWSKY. Geodesy: The Concepts. Elsevier Science. 1996
•	WELLS, D., BECK, N., DELIKARAOGLOU, D., KLEUSBERG, A., KRAVIWISKY, E.J., LACHAPELLE, G., LANGLEY, R., NAKIBOGLU, M., SCHWARZ, K.P., TRANQUILLA, J.M., AND VANÍCEK, P. Guide to GPS Positioning . Canadian GPS Associates, Fredericton, 1986

GNSS Augmentation to Tsunami Early Warning Systems (GATEW)

- Projeto no âmbito do IAG/GGOS, liderado pelo Dr. John LaBrecque
- Objetivo: definição de requisitos, identificação de recursos e incentivo à cooperação internacional para o estabelecimento, avanço e utilização do GNSS para alertas de tsunamis
- Rápida determinação da magnitude do terremoto crucial para definição da escala de tsunami
 - Métodos atuais: ~20 min
 - Métodos baseados no GNSS: potencial para 3 min!
- Distúrbios ionosféricos fornecem informações sobre a propagação do tsunami no oceano
- Chamada para participação em 2016, com respostas positivas de 10 países
 - Primeira reunião do grupo de trabalho em junho de 2017

El ICRS (International Celestial Reference System) se materializa nediante coordenadas de fuentes de radio extragalácticas (Quasars) observadas por Very Long Baseline Interferometry (VLBI). La naterialización se llama International Celestial Reference Frame Marco de Referencia Celeste Internacional), ICRF. El ICRF actual (ICRF2 de 2009) contiene coordenadas de fuentes le radio extragalácticas para la época 2000.0 en tres categorías: - 295 fuentes que definen el datum, - 3080 fuentes globales addicionales, - 39 fuentes inestables de tratamiento especial,	HSIRGAS	referencia celeste (ICRF)
 295 fuentes que definen el datum, 3080 fuentes globales addicionales, 39 fuentes inestables de tratamiento especial, 	El ICRS (International C nediante coordenadas d observadas por Very Lou naterialización se Ilama Marco de Referencia C El ICRF actual (ICRF2 d e radio extragalácticas	Celestial Reference System) se materializa e fuentes de radio extragalácticas (Quasars) ng Baseline Interferometry (VLBI). La International Celestial Reference Frame eleste Internacional), ICRF. de 2009) contiene coordenadas de fuentes para la época 2000.0 en tres categorías:
	 295 fuentes que defi 3080 fuentes globales 39 fuentes inestable 	nen el datum, addicionales, es de tratamiento especial,

UERJ A		Exemplo	de Coo	rdenadas	do	ICR	F2			
ICRF Designation	IERS Des.	Right Ascension	Declination	Uncertainty	Corr.	Mean F	First	Last	Nb	Nb
(1)	(2)	h m s	0 ' "	s "	KA-DC	of obse	ervation	span	Sess.	uer.
								·····		
ICRF J000435.6-473619	0002-478	00 04 35.65550384	-47 36 19.6037899	0.00001359 0.0002139	0.383	52501.0	49330.5	54670.7	28	129
ICRF J001031.0+105829	0007+106	00 10 31.00590186	10 58 29.5043827	0.00000491 0.0000930	-0.187	53063.9	47288.7	54803.7	29	559
ICRF J001101.2-261233	0008-264	00 11 01.246/3846	-26 12 33.3//01/1	0.00000660 0.0000936	-0.183	52407.5	4/686.1	54/68.6	45	592
ICRF J001331.1+405137	0010+405	00 13 31.13020334	40 51 37.1441040	0.00000482 0.0000683	-0.139	51619.2	48434.7	54/13./	22	1083
ICRF J001611.0-001512	0013-005	00 16 11.088554/9	-00 15 12.4453413	0.00000435 0.0001005	-0.235	50403.0	4/394.1	51492.8	6/	/16
ICRF J001945./+/52/50	0010+/51	00 19 45.78641940	75 27 50.0174596	0.00000989 0.0000424	-0.050	49249.8	44345.0	54005.7	450	25056
ICRF 3002232.4+060804	0019+058	00 22 32.44120914	41 37 06 0003033	0.00000439 0.0000938	-0.257	52705.0	4/594.1	54000.7	42	1004
ICRF 3005024.07413700	0055+415	00 50 24.04559251	41 57 00.0005052	0.00000499 0.0000013	-0.055	52202.4	49422.9	54007.7	1903	41492
TCRF 3005041.5-092905	0048-097	00 50 41.51/58/50	40 26 22 2022480	0.00000278 0.0000428	0.012	51525.1	44//J.0	54010.7	1002	41402
TCDE 301034E 7/E83411	0040-427	00 51 05.50182012	FR 24 11 1266000	0.00000532 0.0001177	0.015	53637.0	49730.0	54507.7	1964	226090
TCDE 3010545 1 402410	00337381	01 02 45.70250240	40 24 10 0600000	0.00000325 0.0000414	0.005	52050.9	40720.9	54000.7	1175	11521
TCRE 3010045.1-405419	0104-408	01 00 45.10750051	-40 34 19.9002291	0.00000370 0.0000433	0.010	52201.5	£2790 7	54505.0	24	102
TCRF 1011205 8+224438	0109+224	01 12 05 82471754	22 44 38 7863909	0.00000174 0.00001750	-0 007	51836 0	48434 7	54872 7	37	1851
TCRF 1011327 0+494824	0110+495	01 13 27 00680344	49 48 24 0431742	0.00000575 0.0000055	-0.007	52989 4	49422 9	54781 7	20	759
TCRF 1011857 2-214130	0116-219	01 18 57 26216666	-21 41 30 1399986	0 00000683 0 0001138	-0.058	52128 2	50632 3	54768 6	19	289
TCRF 1012141 5+114950	0119+115	01 21 41 59504339	11 49 50 4131012	0 00000279 0 0000429	-0 018	52622 1	47394 1	54901 7	1151	36167
TCRF 1013305 7-520003	0131-522	01 33 05 76255607	-52 00 03 9457209	0 00001218 0 0001605	0.251	52621.9	48162.4	54901.7	28	126
TCRF 1013658.5+475129	0133+476	01 36 58 59480585	47 51 29,1000445	0.00000407 0.0000414	0.014	52890.7	44343.6	54907.7	1307	117353
TCRF 1013708.7+312235	0134+311	01 37 08,73362970	31 22 35,8553611	0.00000553 0.0001012	0.044	53105.6	50219.8	54901.7	13	550
TCRF 1014125.8-092843	0138-097	01 41 25,83215547	-09 28 43,6741894	0.00000455 0.0000878	-0.020	52777.3	46875.8	54768.6	34	1008
TCRF 1015456.2+474326	0151+474	01 54 56,28988783	47 43 26,5395732	0.00000530 0.0000654	-0.014	53123.2	49750.8	54657.8	21	1395
TCRF 1020333.3+723253	0159+723	02 03 33, 38496841	72 32 53,6672938	0.00001231 0.0000546	0.052	52872.5	47011.4	54907.7	35	1482
ICRF 3020504.9+321230	0202+319	02 05 04,92536007	32 12 30,0954538	0.00000367 0.0000520	-0.038	52311.3	45466.3	54852.7	62	2357
ICRF J021748.9+014449	0215+015	02 17 48,95475182	01 44 49,6990704	0.00000348 0.0000673	-0.120	51978.4	48919.9	54837.7	37	1200
ICRF J022428.4+065923	0221+067	02 24 28.42819659	06 59 23.3415393	0.00000382 0.0000683	-0.214	52153.5	47394.1	54662.7	68	1173
ICRF J022934.9-784745	0230-790	02 29 34.94659358	-78 47 45.6017972	0.00003546 0.0001073	0.032	52873.3	47626.5	54726.7	49	247
ICRF J023145.8+132254	0229+131	02 31 45.89405431	13 22 54.7162668	0.00000281 0.0000422	-0.006	49841.4	44773.8	54844.7	2537	66911
ICRF J023631.1-295355	0234-301	02 36 31.16942057	-29 53 55.5402759	0.00000978 0.0001544	-0.032	53761.6	53126.1	54741.8	16	135
ICRF J023653.2-613615	0235-618	02 36 53.24574589	-61 36 15.1834250	0.00002197 0.0001688	0.249	53734.9	52861.2	54670.7	17	106
ICRF J023752.4+284808	0234+285	02 37 52.40567732	28 48 08.9900231	0.00000313 0.0000421	-0.023	49361.6	44447.0	54664.7	1199	53070
ICRF J023945.4-023440	0237-027	02 39 45.47226775	-02 34 40.9144020	0.00000359 0.0000672	-0.090	52760.9	49253.8	54901.7	36	1437
ICRF J030335.2+471616	0300+470	03 03 35.24222254	47 16 16.2754406	0.00000417 0.0000433	-0.048	48470.0	44343.6	54844.7	757	25008
ICRF J030350.6-621125	0302-623	03 03 50.63134799	-62 11 25.5498711	0.00001499 0.0001135	0.150	51436.6	48162.4	54726.7	44	248
		(1	fonte: http://hpie	ers.obspm.fr/icrs-p	oc/)					

observ	aciones geod	ésicas y astronómico
Sistema inercial convencional (Conventional inertial system, CIS) Sistema ecuatorial de una época fija (p.ej., $t_0 = 2000.0$) Eje Z = polo celeste en la época fija	(Precesión) Nutación →	Sistema celeste intermedio (Celestial intermediate system) Sistema ecuatorial momentáneo (verdadero) Eje Z = polo celeste intermedio (Celestial intermediate pole, CIP)

SIRGAS	Dependencia del sistema de
t.	referencia terrestre del tiempo
Para conservar la con	nsistencia entre las coordenadas en el sistema
terrestre convencion	al y las posiciones actuales y las efemérides de
los satélites, hay que	e corregir las coordenadas de las estaciones
terrestres por sus mo	ovimientos (velocidades).
Los movimientos rec	quieren de un sistema de referencia cinemático
al que se refieran las	velocidades.
Las deformaciones r	nayores de la corteza terrestre provienen del
movimiento de las p	lacas tectónicas (cinemática de placas).
El sistema de referer	ncia cinemático se define, tradicionalmente,
por los modelos geo	lógicos y geofísicos de la cinemática de placas
(AMO-2, <i>Minster y J</i>	lordan 1974, 1978;
NNR NUVEL-IA, L	De Miets et al., 1990, 1991, 1994).

Transf	iormation n	aramete	ns from .	TTRE2014 +	o nast TTP	Fc P010			
	ormación p			LINF2014 C					
SOLUT: UNITS	:ON	Tx mm	ту mm	Tz	D ppb	R× .001"	Ry .001"	Rz .001"	EPOCH
UNITS	RATES	Tx mm/y	Ту mm/у	Tz mm/y	D ppb/y	Rx .001"/y	Ry .001"/y	Rz .001"/y	
ITR	2008 rates	1.6	1.9	2.4 -0.1	-0.02	0.00	0.00	0.00	2010.0
ITR	2005 rates	2.6	1.0	-2.3	0.92	0.00	0.00	0.00	2010.0
ITR	2000 rates	0.7 0.1	1.2	-26.1	2.12 0.11	0.00	0.00	0.00	2010.0
	rates	7.4 0.1 7.4	-0.5 -0.5 -0.5	-62.8 -3.3 -62.8	3.80 0.12 3.80	0.00	0.00	0.26 0.02 0.26	2010.0
ITR	rates 94	0.1 7.4	-0.5 -0.5	-3.3 -62.8	0.12 3.80	0.00	0.00	0.02	2010.0
ITR	rates 93 rates	0.1 -50.4 -2.8	-0.5 3.3 -0.1	-3.3 -60.2	0.12 4.29 0.12	0.00 -2.81 -0.11	0.00 -3.38 -0.19	0.02 0.40	2010.0
ITR	92 rates	15.4 0.1	1.5	-70.8	3.09	0.00	0.00	0.26	2010.0
ITR	91 rates	27.4 0.1	15.5 -0.5	-76.8	4.49 0.12	0.00	0.00	0.26	2010.0
ITR	rates	0.1 30.4	-0.5	-3.3 -130.8	0.12 8.19	0.00	0.00	0.02	2010.0
TTR	rates 88	0.1 25.4	-0.5	-3.3 -154.8	0.12 11.29	0.00 0.10	0.00 0.00	0.02	2010.0

Diferenças entre as soluções individuais e a solução combinada final					
	Norte	Este	Altitude		
IBGE	± 2.6 mm	± 3.6 mm	± 7.8 mm		
DGFI	± 2.6 mm	± 3.7 mm	± 7.0 mm		
BEK	± 2.2 mm	± 4.0 mm	± 6.8 mm		

Adoção do Marc	o de Refer	rência SIRGAS
Resolução 4 da 7ª UNRCC-A (2001) recomendou a adocão de	País	Marco de Referência Nacional
um marco de referência	Argentina	ITRF2005, época 2006.6
compatível com SIRGAS pelos	Bolívia	SIRGAS95, época 1995.4
países das Américas	Brasil	SIRGAS2000, época 2000.4
Besolução 7 da 8ª LINBCC-A	Chile	SIRGAS2000, época 2002.0
recomendou a integração dos	Colombia	SIRGAS95, época 1995.4
países da América Central e	Costa Rica	ITRF2000, época 2005.8
Caribe ao SIRGAS	Ecuador	SIRGAS95, época 1995.4
SIBGAS deu suporte à solução	El Salvador	SIRGAS, época 2007.8
do conflito de fronteiras entre Ecuador e Perú, o mais longo	Guiana Francesa	ITRF93, época 1995.0
das Américas (desde 1800s!)	Guatemala	SIRGAS
Atualmente: 20 países membros	México	ITRF2008, época 2010.0
	Panamá	SIRGAS2000, época 2000.0
America do Sui: 12 América Control: 6	Perú	SIRGAS95, época 1995.4
America Certifal . 0 América do Norte: 1	Uruguay	SIRGAS95, época 1995.4
Caribe: 1	Venezuela	SIRGAS95, época 1995.4
		(fonte: www.sirgas.org)

UERJ O		Cronograma			
	Data	Ação			
	2000	Criação do PMRG ¹ Definição do Sistema de Referência Início do Período de Transição ² (convivência entre os sistemas antigos e o SIRGAS2000)			
	2003				
	25/02/2005				
	25/02/2015	Adoção definitiva do novo sistema ³			
	 I Seminário so RPR 01/2005, Geocêntrico no RPR 01/2015 	obre Referencial Geocêntrico no Brasil em desdobramento ao II Seminário sobre Referencial o Brasil (de 30/11 a 03/12/2004)			

UERJ

Legislação que suportou a adoção do SIRGAS2000

Decreto Nº 5334/2005, de 06/01/2005

Altera a redação do Art. 21, do decreto № 89.817 "Os referenciais planimétrico e altimétrico para a Cartografia Brasileira são aqueles que definem o Sistema Geodésico Brasileiro - SGB, **conforme estabelecido pelo IBGE**, em suas especificações e normas"

RPR 01/2005, de 25/02/2005, e RPR 04/2012, de 18 de abril de 2012

"Estabelece o Sistema de Referência Geocêntrico para as Américas -SIRGAS, em sua realização do ano de 2000 - SIRGAS2000, como novo sistema geodésico de referência para o Sistema Geodésico Brasileiro -SGB e para o Sistema Cartográfico Nacional - SCN"

RPR 01/2015, de 24/02/2005

"Define a data de término do período de transição definido na RPR 01/2005 e dá outras providências sobre a transformação entre os referenciais geodésicos adotados no Brasil"

UERJ

Período de Transição

- Intervalo de tempo durante o qual o SIRGAS2000 e os sistemas anteriores (SAD 69 e Córrego Alegre) podiam ser oficialmente utilizados, proporcionando ao usuário a possibilidade de adequação e ajuste de suas bases de dados, métodos e procedimentos ao novo sistema
- Adoção não era obrigatória, mas recomendada
- Término do período de transição: 25/02/2015

Principais dados, informações, ferramentas e serviços disponibilizados aos usuários no período de transição

- Coordenadas SIRGAS2000 para todas as estações planimétricas da rede geodésica disponibilizadas no Banco de Dados Geodésicos na Internet
- **RBMC** ampliada, modernizada e potencializada com estações operando em tempo real (RBMC-IP)
- Posicionamento por Ponto Preciso (PPP)
- Programas de transformação de coordenadas TCGeo e ProGriD
- Modelo geoidal referido ao SIRGAS2000 (última versão: MAPGEO2015)

Serviço RBMC-IP Disponibiliza fluxo de dados, efemérides e correções GNSS das estações da RBMC-IP através do protocolo TCP/IP, possibilitando a realização de levantamentos RTK Utiliza o NTRIP - Networked Transport of RTCM via Internet Protocol (desenvolvido pela Agência Alemã de Geodésia e Cartografia) Possibilita a integração de dados a partir de diferentes receptores na transmissão em tempo real (formato RTCM 3.0) Banda necessária para a transmissão dos dados é de 0,5 Kbps (DGPS) e 3 Kbps (RTK) por estação (fonte: IBGE)

Serviço IBGE-P	PP	
CERT S Posicionamento por Ponto Preciso (PPP) - IBGE - Windows Internet Explorer		- 0 ×
🕒 💿 🔻 🖻 http://www.ppp.ibge.gov.br/ppp.htm	👻 🍫 🗙 Live Search	ب ۾
pdf - 🔎 👻 Search 🗐 0 📆 PDF		
😭 🎄 🎉 Posicionamento por Ponto Preciso (PPP) - IBGE	🐴 🔻 🔝 👻 🖶 👻 Página 👻 🎯 Fer	ramentas 🔻 »
🔯 Ministério do Planejamento, Orçamento e Gestão	Destaques do governo	•
Posicionamento por Ponto Preciso (PPP)		
ESTA OPÇÃO NÃO É OBRIGATÓRIA. Por favor, caso tenha feito o levantamento em uma estação do Sistema Geodésico Brasileiro, pr	reencha o campo abaixo.	
Coloque o código da estação que está estampado na chapa do marco: (por exemplo: 1120R)		- 1
Selecione um arquivo RINEX: Procurar		E
Selecione o Modo de Processamento:		
OS VALORES SELECIONADOS AQUI SERÃO ADOTADOS PARA TODOS RINEX QUE ESTEJAM COM	MPRIMIDOS EM UM ÚNICO ARQUIVO.	
Tipo de Antena: Nao alterar RINEX -		
Altura da antena (m): 0.000 🔲 O valor para altura da antena somente será adotado :	se esta caixa estiver marcada.	
E-mail válido, para onde será enviada a resposta.		
O e-mail não poderá conter espaços no nome:	Processar	
Nota: O processamento iniciará após a transferência do arquivo, o que pode demorar alguns min Caso o resultado não seja enviado em 24 horas, por favor reprocesse.	nutos.	-
	🗣 Intranet local Modo Protegido: Desativado 🧕 🖲	100% -
👘 🚱 🌔 🐣 🔭 🛃 Barra de at 🕕 3 Windo 🔻 👩 3 Micros 👻 🔫 2 IBM Lot	🖌 🥭 Posiciona 🥂 Adobe Acr PT 📾 < 👫	🛃 🌒 14:52

UERJ		Parâmetros de transformação							
S ESTADO SO	Parâmetros de transformação de SAD 69 para SIRGAS2000/ WGS84(G1762)								
	SAD 69 \rightarrow SIRGAS2000 / WGS 84(G1762)								
		$\Delta X = - 67,35 \text{ m}$ $\Delta Y = -3,88 \text{ m}$ $\Delta Z = -38,22 \text{ m}$							
	Obs: Não existem parâmetros de transformação de WGS 84(G1150) ou WGS 84(G1762) para SIRGAS2000, pois são coincidentes do ponto de vista prático								
•	Parâmetro usados pa ✓ Acuráci ✓ Devem	bs de transformação calculados em 1989(RPR ara transformar SAD 69 para WGS 84 (Doppler ia pior que 0,40 m ser usados em levantamentos até 31/12/93 SAD 69 → WGS 84 (Doppler)	23/89),)						
		$\Delta X = -66,87 \text{ m}$ $\Delta Y = -4,37 \text{ m}$ $\Delta Z = -38,52 \text{ m}$							

Other GNSS (1/2)

- <u>Global Navigation Satellite System</u> (GLONASS)
 - Russian system which is similar to GPS
 - First launch in 1982 (three satellites launched at a time)
 - Currently 24 operational satellites
 - 3 orbital planes
 - 19,000 km altitude
- Galileo
 - · Under development by the European Union
 - 3 orbital planes
 - 23,222 km altitude
 - Galileo Initial Services in Dec 2016
 - Currently 11 operational satellites, 2 in test (launched into wrong orbits), 4 under commissioning (Mar 2017)
 - Full Operational Capability (FOC) predicted by 2020
 - Similar to GPS with some additional signals and improvements in signal characteristics

© 2012 Mark G. Petovello / modified by Luiz Paulo S. Fortes (2015)

Other GNSS (2/2)

- BeiDou
 - · System currently under development by China
 - · MEO satellites:
 - · 24 satellites (nominal constellation); 6 SVs in Mar 2017
 - 3 orbital planes
 - 21,500 km altitude
 - Six frequencies and eight signals
 - Signal details released in late 2012
 - · Final system is not expected until 2020

Regional GNSS

- Quazi-Zenith Satellite System QZSS (Japan)
- Indian Regional Navigation Satellite System IRNSS (India)

GPS Ground Segment – Reference Frame & Time

- GPS uses the World Geodetic System 1984 (WGS 84) as its reference frame. Differences between WGS 84 and other global reference systems such as ITRF are at the centimetre level.
- Timing is at the very heart of GPS since ranges are based on time of propagation of electro-magnetic waves. GPS has therefore defined its own time scale which is kept using a week count (GPS Week) and time into the week (TOW) in seconds.
 - GPS provides an atomic time scale determined by the satellite clocks plus five ground based atomic clocks.
 - GPS time was coincident with UTC at the GPS standard epoch of January 6, 1980 (0 hour)
 - No integer leap seconds are introduced into GPS time scale, but leap seconds are introduced in UTC

-		5/ Satemite		UUNS	
Туре		Accuracy	Latency	Updates	Sample Interval
	orbits	~100 cm			
Broadcast	Sat. clocks	~5 ns RMS ~2.5 ns SDev	real time		daily
	orbits	~5 cm			
Ultra-Rapid (predicted half)	Sat. clocks	~3 ns RMS ~1.5 ns SDev	real time	at 03, 09, 15, 21 UTC	15 min
	orbits	~3 cm			
Ultra-Rapid (observed half)	Sat. clocks	~150 ps RMS ~50 ps SDev	3 - 9 hours	at 03, 09, 15, 21 UTC	15 min
	orbits	~2.5 cm			15 min
Rapid	Sat. & Stn. clocks	~75 ps RMS ~25 ps SDev	17 - 41 hours	at 17 UTC daily	5 min
	orbits	~2.5 cm			15 min
Final	Sat. & Stn. clocks	~75 ps RMS ~20 ps SDev	12 - 18 days	every Thursday	Sat.: 30s Stn.: 5 min

Selective Availability and Anti-Spoofing
 Anti-Spoofing (AS) Prevents receivers from being spoofed by fake signals Effected through encryption of P code Encrypted P code becomes Y code P code on L1 and L2 no longer possible with standard code correlation techniques
 Selective Availability (SA) Limited available accuracy of GPS to non-authorized users Effected through satellite clock dithering and broadcast orbit accuracy degradation Various SA levels could be implemented Since May 2000, SA has been turned down to zero

Some Online GNSS Resources
 <u>http://www.navipedia.net</u> A wiki containing information about all GNSS (in its infancy in 2013)
<u>http://www.navcen.uscg.gov/</u> US Coast Guard Information Center
 <u>http://www.gpsworld.com/</u> GPS World Magazine
 <u>http://www.insidegnss.com/</u> Inside GNSS Magazine
<u>http://solarscience.msfc.nasa.gov/predict.shtml</u> Solar cycle predictions by NASA
 <u>http://tycho.usno.navy.mil/gps.html</u> U.S. Naval Observatory (USNO) site providing various information on GPS timing operations.
 <u>http://tycho.usno.navy.mil/what.html</u> provides many time services, including a live broadcast of Universal Time and USNO Master Clock.
 <u>http://gauss.gge.unb.ca/CANSPACE.html</u> Canadian Space Geodesy Forum gives regular GPS and GLONASS constellation status reports
 <u>http://igscb.jpl.nasa.gov/</u> International GNSS Service (IGS) site which provides GPS orbits, tracking data, etc. in near real time
© 2012 Mark G. Petovello

GPS C/A and P Codes				
Property	C/A-Code	P-Code		
Chipping Rate	1.023 MHz	10.23 MHz		
Chip Length (analogous to carrier wavelength)	293.1 m	29.31 m		
Code Length	1,023 chips	2.3547 x 10 ¹⁴ chips		
Code Period	1 ms	266.4 days (split into 7-day segments; one per satellite)		
Minimum Received Power	-158.5 dBW	-161.5 dBW (IIR-M satellites or newer)		
The chip length (and thus chipping rate) is important in terms of a receiver's sensitivity to multipath				
 The higher chipping rate for the P-code also makes it less sensitive to jamming and interference 				
 The short period of the C/A makes it easy/fast to acquire 				
 'dBW' denotes power relative to one Watt (1 W) 				

GPS Signals Leaving the Satellite For this course, we only concern ourselves with the "legacy" L1 and L2 signals $L1(t) = AP(t)N(t)\cos(2\pi f_1 t) + \sqrt{2}AC(t)N(t)\sin(2\pi f_1 t)$ $L2(t) = AP(t)N(t)\cos(2\pi f_{12}t)$ where А is the amplitude Ρ is the P-code ranging code С is the C/A-code ranging code Ν is the navigation message (data bits) is the L1 carrier frequency $f_{1,1}$ is the L2 carrier frequency f_{12} 2013 Mark G. Petovello

Prof. Luiz Paulo Souto Fortes, PhD

• The Doppler measurement equation can be written as the time derivative of the carrier phase measurement (recall that the carrier phase is the integrated Doppler)

$$\dot{\Phi} = \dot{\phi}\lambda = \dot{\rho} + d\dot{\rho} + c(d\dot{T} - d\dot{t}) - \dot{d}_{iono} + \dot{d}_{trop} + m_{\dot{\phi}} + n_{\dot{\phi}}$$

• The geometric range rate is given by

$$\dot{\rho} = \frac{\left(\vec{v}_{SV} - \vec{v}_{Rx}\right) \bullet \left(\vec{r}_{SV} - \vec{r}_{Rx}\right)}{\left|\vec{r}_{SV} - \vec{r}_{Rx}\right|}$$

· What can you estimate with Doppler measurements?

© 2012 Mark G. Petovello

Carrier Phase Ambiguity (1/3)

• Recall that the carrier phase is generated by integrating the Doppler within the receiver. Considering the geometric range term only, for convenience:

$$\Phi(t) = \int_{t_0}^{t} \dot{\Phi}(t) \cdot dt$$
$$\approx \int_{t_0}^{t} \dot{\rho}(t) \cdot dt$$
$$= \Delta \rho(t_0, t) + \rho(t_0)$$

• The integration constant, $\rho(t_0)$, is the distance between the satellite and the receiver *when the signal is first acquired* (i.e., at "lock on"). The integer number of cycles contained in this distance is the carrier phase ambiguity.

iguities are inte ey are constant	eger by definition	and are defined		
 Carrier phase ambiguities are integer by definition and are defined at acquisition. They are constant unless loss of lock occurs, even if only for a fraction of a second. The ambiguities are arbitrary (e.g., a few cycles or millions of 				
cycles; positive or negative) and are different for each satellite- receiver measurement. In other words, they do not behave like the receiver clock error which is the same for all satellites. As such, estimating the ambiguities is much more difficult; more on this later in the course.				
 The <i>approximate</i> ambiguity can be derived using pseudorange and carrier phase. Why is this only approximate? 				
Pseudorange (m)	Carrier phase (cycles)	Ambiguity (φ - Ρ/λ)		
22441825.779	-975001.392	-118907592		
22441597.023	-976188.862	-118907577		
387236 22441371.704 -977375.523 -118907580				
	of a second. e arbitrary (e.g negative) and a nent. In other v r which is the s oiguities is muc ambiguity can r is this only ap Pseudorange (m) 22441825.779 22441597.023 22441371.704	of a second.e arbitrary (e.g., a few cycles onegative) and are different for enent. In other words, they do nor which is the same for all sateloiguities is much more difficult;ambiguity can be derived usingr is this only approximate?PseudorangeCarrier phase(m)(cycles)22441825.779-975001.39222441597.023-976188.86222441371.704-977375.523		

Prof. Luiz Paulo Souto Fortes, PhD

Typical GPS SPS Errors			
Error	Uncompensated	Compensated	
Broadcast satellite clock	• <1 ms (300 km)	• ~5 ns or ~1.5 m (1σ)	
Broadcast orbit	• 1 m (1o)	• N/A	
lonosphere	 1-30 m at zenith (scale by ~3 near horizon) 	 ~0 for dual frequency receiver 50% reduction using basic model 	
Troposphere	 2.4 m at zenith (scale by ~10 near horizon) 	• ~0.2 m	
Code multipath	 dm to m level depending on Rx Max of 0.5 chip 	• N/A	
Carrier phase multipath	• $\leq 0.25\lambda$, but typically 0.1λ (1 σ)	• N/A	
Code Noise	dm to m level depending on Rx	• N/A	
Carrier Phase Noise	 Typically ≤1 mm 	• N/A	
2012 Mark G. Petovello	1	-	

Broadcast Satellite Clock Model

• Due to the high quality of the oscillators in the satellites, the satellite clock errors change smoothly and slowly with time. They are easily modeled using a simple polynomial, whose coefficients (a_{f0}, a_{f1} & a_{f2}) are broadcast in the GPS navigation message. The correction is given by

$$dT = a_{f0} + a_{f1}(t - t_{oc}) + a_{f2}(t - t_{oc})^2$$

- The magnitude of the correction is less than 1 ms, and just like the broadcast ephemeris (for satellite orbit), the satellite clock parameters are predicted ahead of time. The error in the prediction is very small; typically 5 ns, or ~1.5 m (http://igscb.jpl.nasa.gov/components/prods.html).
- The error is the *same* for all receivers tracking the same satellite at the same time. What does this mean in terms of differential error?

Ionosphere Overview

- The ionosphere is the part of the atmosphere (50 1,000 km above the Earth) that contains free electrons. The existence of the ionosphere is due to UV radiation from the Sun. The Sun therefore plays a key role in the level of ionospheric activity. To this end, there are two main variations in the ionospheric effect:
 - Daily (diurnal) variations due to Earth rotation
 - The amount of energy released by the Sun varies with an 11-year solar cycle.
- Largest effects occur in polar regions (auroral zone) and near the geomagnetic equator. Ionospheric scintillation is a major concern, especially in auroral zones and near the geomagnetic equator.

© 2012 Mark G. Petovello

Ionosphere-Free (IF) Linear Phase Combination

 Instead of computing and applying the error as on the previous slide, the ionosphere-free (IF) linear combination for carrier phase measurements is usually formed

$$\phi_{\mathsf{IF}} = \phi_{\mathsf{L1}} - \frac{f_{\mathsf{L2}}}{f_{\mathsf{L1}}} \cdot \phi_{\mathsf{L2}}$$

• However, in this case, the carrier phase ambiguity is also not integer. The importance of this will become obvious when we discuss how to estimate the ambiguities.

$$\mathbf{N}_{\text{IF}} = \mathbf{N}_{\text{L1}} - \frac{\mathbf{f}_{\text{L2}}}{\mathbf{f}_{\text{L1}}} \cdot \mathbf{N}_{\text{L2}}$$

Geographic	Error Magnitudes		
Location	Typical (RMS)	Extreme	
Auroral Zone	1-3 ppm	10 ppm [1] 10 ppm [2]	
Mid-Latitude	1-3 ppm	8 ppm [3] 10 ppm [1]	
Low Latitudes	1-3 ppm	17 ppm [4] 30 ppm [5]	

Dry and Wet Refractivity				
 The dry (hydrostatic) refractivity accounts for 80-90% of the total errors and is a function of surface pressure (P) and surface temperature (T). Fortunately, these parameters are able to be well predicted with altitude and thus a 'dry' model can remove ~99% of the error. In contrast, the wet refractivity accounts for 10-20% of the total errors and is a function of partial pressure of water vapour (e) and surface temperature (T). Since the water vapour content is difficult to predict with altitude, a 'wet' model can only remove 80-90% of the error. 				
Term	Error Magnitude (Typ.)	Correction Accuracy (Typ.)	Error After Correction (Typ.)	
Dry	1.9 m (80%)	99%	0.02 m	
Wet	0.5 m (20%)	85%	0.08 m	
Total	2.4 m	96% (computed)	0.10 m	

Troposphere Models

• Troposphere models usually try to model the dry and wet refractivity in the zenith and then map this error to a particular elevation angle (of the satellite). Note that the mapping function is usually different for the dry and wet errors.

$$\begin{split} N &= N_{d} + N_{w} \\ &= N_{d}^{z} \cdot m_{d}(\epsilon) + N_{w}^{z} \cdot m_{w}(\epsilon) \end{split}$$

- A couple notes
 - The mapping functions, $m(\epsilon)$, assume the atmosphere is isotropic. That is, they assume the atmosphere is the same in all directions. Is this reasonable?
 - Ideally, the zenith refractivity values should account for the height of the user (above h=0). Otherwise, the algorithm may over-compensate the error.

GNSS Receiver Clock Error

- We have already seen that a GNSS receiver's estimate of GNSS time is generally incorrect and thus introduces a bias into *all* of the measurements at a given instant.
- Although the clock error could theoretically grow without bound, GNSS receiver manufacturers usually limit it to within predefined levels (typically ±1 ms). This can be enforced by periodically resetting the receiver's clock estimate (called a millisecond jump) or by "steering" the receiver's oscillator such that the clock error remains approximately constant (i.e., no clock drift).

Multipath Error Summary				
Characteristic	Pseudorange	Carrier Phase		
Presence of Error	Completely dependent on reflecting geometry			
Magnitude	Maximum of 0.5 chips	Maximum of 0.25 λ		
Zero mean?	No	Yes		
Temporal variability	Approximately sinusoidal over a few 10's of seconds			
Temporal correlation	Over a few 10's of seconds			
Spatial correlation	Zero (beyond ~10 cm)			
Reduced by differential?	No (amplified in terms of a standard deviation)			
© 2012 Mark G. Petovello				

Single Point Positioning

• A single point position is when you compute your solution using pseudorange data from only one receiver. Expanding the measurement model for the i-th satellite gives

$$\begin{split} P_{i} &= \rho_{i} + cdt + \epsilon_{P} \\ &= \sqrt{\left(x_{i}^{s} - x^{r}\right)^{2} + \left(y_{i}^{s} - y^{r}\right)^{2} + \left(z_{i}^{s} - z^{r}\right)^{2}} + cdt + \epsilon_{i}^{P} \\ &= f\left(\hat{\boldsymbol{x}}\right) \end{split}$$

In this case, the unknowns are the position of the receiver (x^r, y^r, z^r) and the receiver clock bias in units of length (cdt):

$$\mathbf{x}^{\mathsf{T}} = \begin{bmatrix} \mathbf{x}^{\mathsf{r}} & \mathbf{y}^{\mathsf{r}} & \mathbf{z}^{\mathsf{r}} & \mathsf{cdt} \end{bmatrix}$$

Finally, the error term ϵ_{P} is the total of all errors

Alternate Between-Receiver Difference (2/2)

- Note that the correction term only contains error terms. Since most of the errors change slowly, the corrections can be generated (and communicated) at a relatively low rate. This eases the requirements of the communication system.
- Once the corrections are received at the rover station, they can be applied to the rover data (subscript 'r' is for rover station)
 - $$\begin{split} P_r &= \rho_r + d\rho_r + c(dT dt_r) + d_{iono,r} + d_{trop,r} + m_{P,r} + n_{P,r} Correction \\ &= \rho_r + d\rho_r + c(dT dt_r) + d_{iono,r} + d_{trop,r} + m_{P,r} + n_{P,r} \\ &- d\rho_b + c(dT dt_b) + d_{iono,b} + d_{trop,b} + m_{P,b} + n_{P,b} \\ &= \rho_r + \Delta d\rho + c(\Delta dT \Delta dt) + \Delta d_{iono} + \Delta d_{trop} + \Delta m_P + \Delta n_P \end{split}$$
- In this case, the errors are the same as if the measurements were differenced directly.

- Ambiguity resolution exploits the integer nature of the ambiguities. Specifically, once resolved as integers – that is, once the (hopefully correct) integer values are determined – the ambiguities no longer need to be estimated and they can be removed from the vector of unknowns, resulting in more degrees of freedom and higher accuracy.
- If the ambiguities are known, we can write:

$$\nabla \Delta \Phi - \lambda \nabla \Delta N = \nabla \Delta \rho + \nabla \Delta d\rho + \nabla \Delta d_{inno} + \nabla \Delta d_{irop} + \nabla \Delta m_{\Phi} + \nabla \Delta n_{\Phi}$$

This is the same as the right hand side of the double difference pseudorange equation, but with smaller noise and multipath errors! (and opposite sign on the ionosphere)

• In this way, the best possible positioning accuracy is obtained more quickly than when using float ambiguities.

Getting a Feel for Ambiguity Resolution (1/2)

 Ambiguity resolution is a very challenging process for two main reasons: (i) it is computationally difficult, and (ii) there is a possibility of incorrectly fixing an ambiguity. The latter comes with an associated integrity risk. Incorrect ambiguity fixing is a major concern because of the short wavelengths involved.

Rule of Thumb: To resolve carrier phase ambiguities, you need your range errors (biases + noise) to be less than half of the carrier wavelength

- For L1 ($\lambda \approx 19$ cm), the above rule of thumb requires you to have range errors less than 9.5 cm!
- Note that the above "threshold" can be satisfied over time by trying to average out the various error sources.

© 2012 Mark G. Petovello

Prof. Luiz Paulo Souto Fortes, PhD

Key Factors Affecting Ambiguity Resolution

- · Static versus kinematic
 - Ambiguities are generally easier to resolve in static mode because the errors can be more effectively averaged
- Baseline separation
 - The shorter the baseline, the easier it is to resolve ambiguities
- Multipath
 - Since multipath is site-specific it has a major impact on ambiguity resolution
- Length of data set and geometry
 - Information is gained through the satellite geometry change longer observation times give better opportunity for resolution
 - · The more satellites tracked the better
- Type of GNSS receiver
 - Dual-frequency receivers can usually resolve ambiguities faster than single frequency systems due to ability to form linear carrier phase combinations

© 2012 Mark G. Petovello / modified by Luiz Paulo S. Fortes (2017)

9	Some Co	ommon C	ombinat	tions				
Name	а	b	λ (m)	Ambiguity				
L1 only	1	0	0.1903	N _{L1}				
L2 only	0	1	0.2442	N _{L2}				
Widelane	1	-1	0.8619	$N_{WL} = N_{L1} - N_{L2}$				
lonosphere-free	1	-f _{L2} / f _{L1}	0.4844	$N_{IF} = N_{L1} - f_{L2} / f_{L1} N_{L2}$				
Narrowlane	1	1	0.1070	$N_{\rm NL} = N_{\rm L1} + N_{\rm L2}$				
Note that the am longer integer in algorithms	biguities for t nature and t	the ionosphe hus cannot b	re free (IF) c e used in an	ombination are no nbiguity resolution				

Prof. Luiz Paulo Souto Fortes, PhD

RTK vs. DGNSS Processing

- The term "real-time kinematic" (RTK) was initially coined in the context of fixed ambiguity carrier phase positioning. However, it is more generally used to refer to any form of carrier phase processing, including when using float ambiguities. This contrasts with term "differential GNSS" (DGNSS) which is used to refer to positioning based on pseudorange measurement only (possibly with carrier smoothing).
- RTK messages 18-21 are used for RTK (carrier phase) positioning.

Nr	Model 11	Year	Degree	Data 11	Reference 11	download	calculate s	show	dç
158	HUST-Grace2016s	2016	160	S(Grace)	Zhou Hao et al, 2016	gfc zip	calculate	show	~
157	ITU GRACE16	2016	180	S(Grace)	Akvilmaz et al. 2016b	afc zip	calculate	show	J
156	ITU GGC16	2016	280	S(Grace, Goce)	Akyilmaz et al, 2016a	gfc zip	calculate	show	1
155	EIGEN-6S4v2	2016	300	S(Goce, Grace, Lageos)	Förste et al, 2016	gfc zip	calculate	show	1
154	GOC005c	2016	720	S,G,A (see model)	Pail, et al. 2016	gfc zip	calculate	show	1
153	GGM05C	2016	360	S(Grace, Goce), G,A	Ries et al. 2016	afc zip	calculate	show	1
152	GECO	2015	2190	S(Goce),EGM2008	Gilardoni et al, 2015	gfc zip	calculate	show	Ť.
151	GGM05G	2015	240	S(Grace, Goce)	Bettadpur et al, 2015	gfc zip	calculate	show	
150	GOCO05s	2015	280	S(see model)	Mayer-Gürr, et al. 2015	gfc zip	calculate	show	
149	GO_CONS_GCF_2_SPW_R4	2014	280	S(Goce)	Gatti et al, 2014	gfc zip	calculate	show	
148	EIGEN-6C4	2014	2190	S(Goce, Grace, Lageos), G, A	Förste et al, 2015	gfc zip	calculate	show	~
147	ITSG-Grace2014s	2014	200	S(Grace)	Mayer-Gürr et al, 2014	gfc zip	calculate	show	
146	ITSG-Grace2014k	2014	200	S(Grace)	Mayer-Gürr et al, 2014	gfc zip	calculate	show	
145	GO_CONS_GCF_2_TIM_R5	2014	280	S(Goce)	Brockmann et al, 2014	gfc zip	calculate	show	
144	GO_CONS_GCF_2_DIR_R5	2014	300	S(Goce,Grace,Lageos)	Bruinsma et al, 2013	gfc zip	calculate	show	
143	JYY_GOCE04S	2014	230	S(Goce)	Yi et al, 2013	gfc zip	calculate	show	
	FIGEN A	0000		2(2)	D 1 1 4 4 4 4 4 4 4 4				_
81	EIGEN-2	2003	140	S(Champ)	Reigber et al, 2003b	gtc zip	calculate	show	-
80	EIGEN-1	2002	119	S(Champ)	Reigber et al, 2003a	grc zip	calculate	show	-
79	EIGEN-15	2002	119	GRIND,S	Reigber et al, 2002	grc zip	calculate	snow	-
77	TECA	2000	300	5,0,A	Taplay at al. 2000	gic zip	calculate	snow	-
76	CDIMEC4	2000	100	5,0,A	Cruber et al. 2000	grc zip	calculate	snow	
76	GRIMBC1	1999	00	5,0,A	Biapeale et al. 2000	gic zip	calculate	show	-
74	GRIMASAG	1000	100	GDIMASA S(GET 1)	König et al. 1999	gic zip	calculate	show	
73	GE797	1007	359	PGM062w G A	Gruber et al. 1997b	afc zin	calculate	chow	
72	EGM96	1996	360	EGM96S G A	Lemoine et al. 1998	afc zip	calculate	show	
14	Lonioo	1000	000	LOM000,0,74	Lemone et al, 1000	Sio rip	curculate	311011	-
3	OSU68	1968	14	S,G	Rapp, 1968	gfc	calculate	show	
2	WGS66	1966	24	G	WGS Committee, 1966	gfc	calculate	show	
1	SE1	1966	15	S	Lundquist and Veis, 1966	afc	calculate	show	

