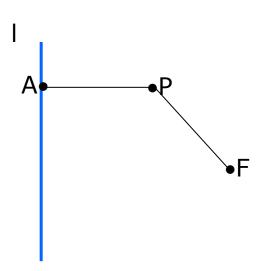
Algebra Lineal y Geometría.

Unidad n°10: Ecuación General de Segundo Grado en dos Variables.

Contenidos

Cónicas como secciones planas de un cono circular recto. Circunferencia. Ecuación General. Circunferencia determinada por tres puntos. Intersección de rectas y circunferencias. Potencia de un punto respecto a una circunferencia. Intersección de circunferencias. Elipse: Definición, Ecuación canónica. Elementos. Hipérbola: Definición, Ecuación canónica. Elementos. Parábola: Definición, Ecuación canónica. Elementos. Ecuaciones de las cónicas con otros ejes. Ecuaciones de las cónicas cuyo centro o vértice no coincide con el origen de coordenadas.

Bibliografía


- Lic. Albino de Sunkel, María Helena- "Geometría Analítica en forma vectorial y Matricial" – Editorial Nueva Librería S.R.L. 1989. (*)
- Di Pietro, Donato Geometría Analítica- Ed. Alsina. –
 1980.(*)
- Lehmann, Charles Geometría Analítica Ed.Hispano Americana.(*)
- Swokowski, Earl W. "Cálculo con Geometría Analítica"-Grupo Editorial Iberoamericana S.A.de C.V. Edición 1993.
- Ruiz, Andrés- Alvarez Fernando- Límites 2. Matemáticas Ediciones Vicens Vives S.A.- 1999
- De Burgos, J. "Algebra Lineal y Geometría cartesiana" (2da. Edición) -Mc Graw Hill- 2000
- D.C.Murdoch- "Geometría Analítica con Vectores y Matrices"-Edit.LIMUSA Noriega.- Edición 1990.
- Steinbruch Basso.- "Geometría Analítica Plana" -Edit.Mac. Graw Hill - Ed. 1993.

Cónicas \leftrightarrow Ax²+Bxy+Cy²+Dx+Ey+F=0

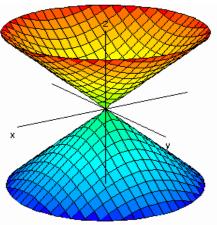
- Sea una recta fija I y un punto fijo F que no pertenece a I.
- Definición General de Cónica.
- Se llama cónica al lugar geométrico de los puntos del plano determinado por la recta I y el punto fijo F, tales que la razón entre las distancias a F y a l es siempre igual a una constante positiva.
- I: directriz F: foco

Excentricidad

$$e = \frac{|PF|}{|PA|} \Rightarrow \begin{cases} e = 1 \Rightarrow |PF| = |PA| \rightarrow Par\'abola \\ e < 1 \Rightarrow |PF| < |PA| \rightarrow Elipse \\ e > 1 \Rightarrow |PF| > |PA| \rightarrow Hip\'erbola \end{cases}$$

Cónicas como secciones planas de un cono circular recto.

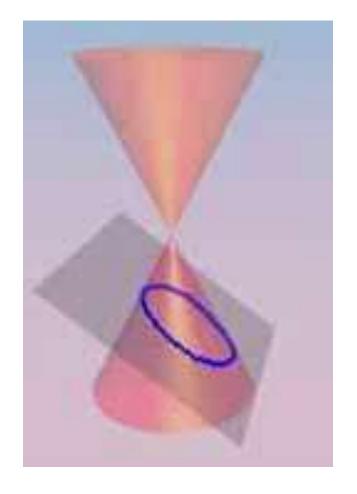
Cónicas como secciones planas de un cono circular recto.


Superficie Cónica: engendrada por una línea recta que se mueve de tal manera que pasa siempre por una curva fija y por un punto fijo, no contenido en el plano de esa curva.

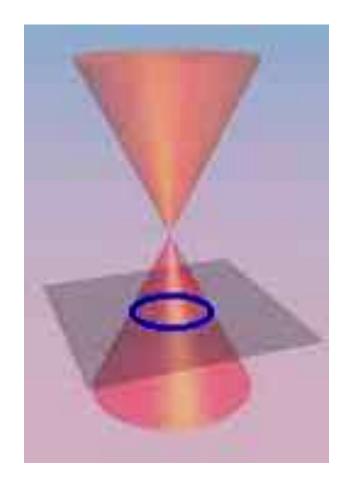
■ Recta móvil: *generatriz*,

Curva fija: directriz

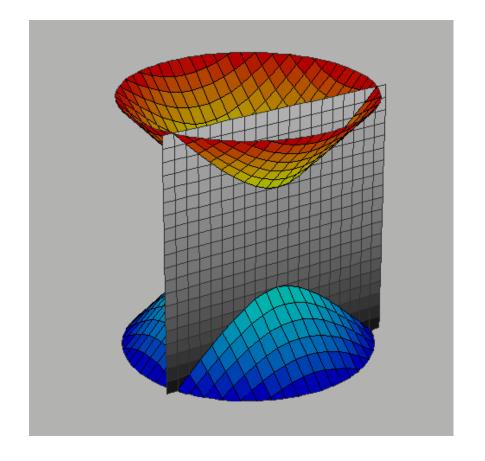
Punto fijo: vértice de superficie cónica.


- V: punto del espacio sobre una recta fija e.
- Todas las rectas que pasen por V y formen un ángulo constante con e se llama CONO CIRCULAR RECTO.
- e : eje del cono,
 es el vértice.

ESP. LIIIaiia Eva Mala


ELIPSE.

Un plano que no pase por el vértice y no es paralelo a ninguna de la generatrices de una hoja las corta a todas y forma una curva cerrada, denominada ELIPSE.


CIRCUNFERENCIA.

 Si el plano es perpendicular al eje del cono, se obtiene una CIRCUNFERENCIA.

HIPERBOLA

Si el plano es paralelo al eje del cono, corta a ambas hojas y forma una sección de dos partes, cada una se extiende indefinidamente a lo largo de la hoja. Esta curva se denomina HIPÉRBOLA.


PARÁBOLA

■ Si el plano es paralelo a una de las generatrices, la intersección se extiende indefinidamente a lo largo de una hoja, pero no corta a la otra. La curva que se obtiene se denomina parábola.

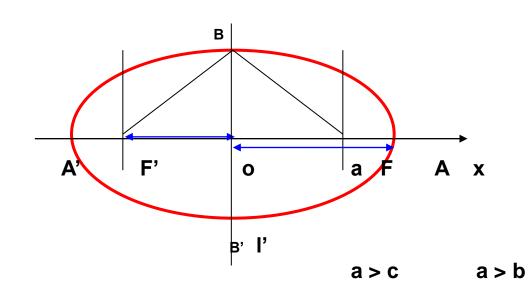
CONICAS DEGRADADAS

Un punto

Una recta

Dos rectas que se cortanen un punto

CÓNICAS COMO LUGAR GEOMÉTRICO.


ELIPSE.

□ UNA ELIPSE ES EL LUGAR
GEOMÉTRICO DE LOS PUNTOS DEL
PLANO TALES QUE LA_SUMA DE SUS
DISTANCIAS A DOS PUNTOS FIJOS
LLAMADOS FOCOS, ES UNA
CONSTANTE POSITIVA MAYOR QUE LA
DISTANCIA ENTRE ELLOS.

$$|FP| + |F'P| = K$$

Elementos

Focos
Eje mayor
Centro
Eje normal
Eje menor
Cuerda

Lado recto

Diámetro

Excentricidad: e = c/a, 0 < e < 1

$$a^2 - c^2 = b^2$$

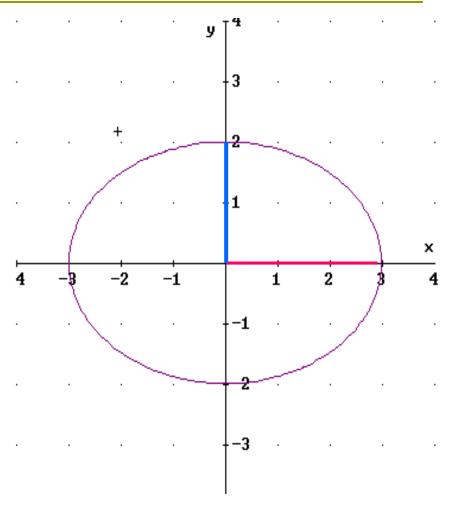
Elipse.Constantes

2a= longitud del eje mayor

2b= longitud de l eje menor.

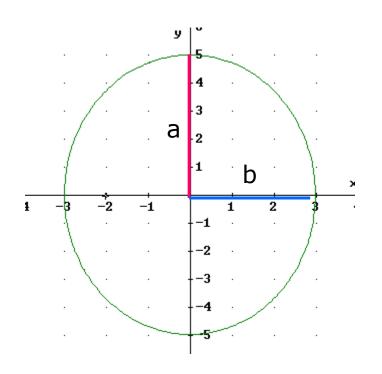
2c= distancia entre los focos.

$$b^2 = a^2 - c^2$$

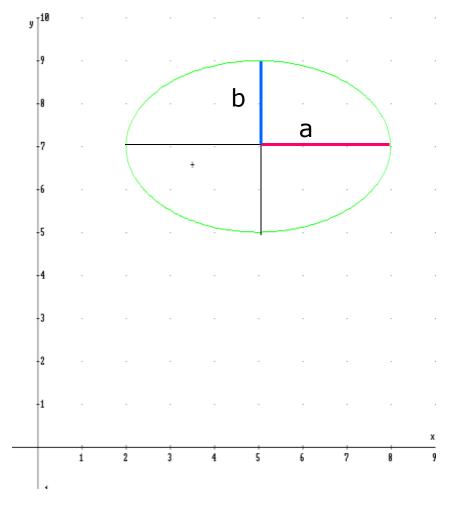

Focos sobre el eje mayor.

$$a > b$$
 $a > c$
Longitud del lado recto: $\frac{2b^2}{a}$
Excentricidad: $0 < e = c/a < 1$

Primera Ecuación Canónica Centro: (0;0)

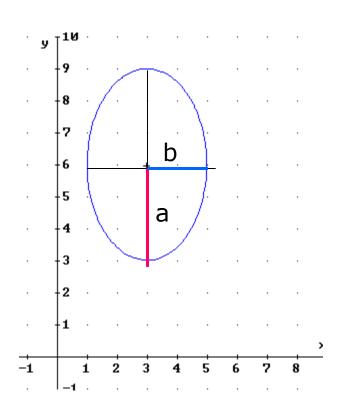

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Focos:(c;0), (-c;0)


$$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$$

Focos: (0;-c), (0;c)

$$\frac{(x-h)^2}{a^2} + \frac{(y-b)^2}{b^2} = 1$$


Focos: $(h \pm c; k)$

Esp. Liliana Eva Mata

$$\frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1$$

Focos: (h; $k \pm a$)

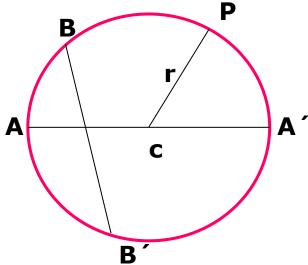
Para cada elipse:

- Escribir las coordenadas del centro, de los focos, de los extremos del eje mayor y de los extremos del eje menor.
- Longitud del eje mayor, longitud eje menor y distancia entre los focos
- Longitud del lado recto
- Excentricidad
- Deducir las condiciones para que la ecuación general de segundo grado represente una elipse con ejes paralelos a los coordenados.
- Pasar de la ecuación general a la ecuación canónica y recíprocamente. Enunciar conclusiones

Circunferencia

Circunferencia de centro c(h;k) y radio r>0: lugar geométrico de los puntos del plano que se encuentran a una distancia "r" del punto c(h;k).

- •NOTACIÓN: C (c, r)
- •ELEMENTOS.

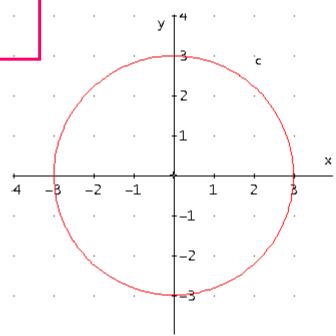

C(h, k):Centro de la circunferencia.

r= |CP|:Radio

BB': Cuerda

AA': Diámetro |AA'| = 2r

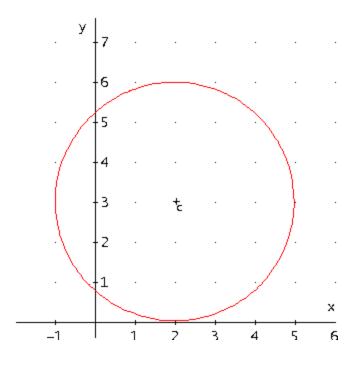
$$\langle \overrightarrow{cp}; \overrightarrow{cp} \rangle = r^2$$


Ecuación General de la cónica de ejes paralelos a los coordenados

$$\square Ax^2+Bxy+Cy^2+Dx+Ey+F=0$$

Ecuaciones

□ Circunferencia de centro C(0;0) y radio r


$$x^2 + y^2 = r^2$$

Esp. Liliana Eva Mata

Circunferencia de centro C(h;k) y radio r.

$$(x-h)^2 + (y-k)^2 = r^2$$

Para cada circunferencia

- Escribir las coordenadas del centro
- Deducir las condiciones para que la ecuación general de segundo grado represente una circunferencia con ejes paralelos a los coordenados.
- Pasar de la ecuación general a la ecuación canónica y recíprocamente. Enunciar conclusiones

ECUACIÓN GENERAL DE SEGUNDO GRADO EN X E Y:Ax²+Bxy+Cy²+Dx+Ey+F=0

```
    A=C
    B=0
    Ax²+ A y²+Dx+Ey+F=0
    D²+E²-4AF>0
        Si A=C=1
    x²+ y²+mx+ny+p=0
    m=-2h n=-2k p=h²+k²-r²
```

Ejercicio

- Escriba las ecuaciones cartesianas y generales de las circunferencias dadas.
- Escriba la ecuación cartesiana y la general de las circunferencias de radio 3 y que sean:
- A) Tangente al eje de abscisas
- □ B) Tangente al eje de ordenadas
- C) Tangente a ambos ejes coordenadas

Hipérbola

Una hipérbola es el lugar geométrico de los puntos del plano tales que el valor absoluto de la DIFERENCIA de sus distancias a dos puntos fijos llamados FOCOS es una CONSTANTE POSITIVA Y MENOR QUE LA DISTANCIA ENTRE ELLOS

Ecuación Vectorial
$$||\mathbf{FP}| - |\mathbf{F'P}|| = \mathbf{K}$$
; $k = 2a$

Elementos

Focos: Fy F' Eje Focal Vértices Eje Transverso Centro Eje Normal Eje Imaginario Cuerda Lado recto Diámetro **Asíntotas**

Elementos

2a= longitud del eje transverso

2b= longitud del eje imaginario

2c= distancia entre los focos.

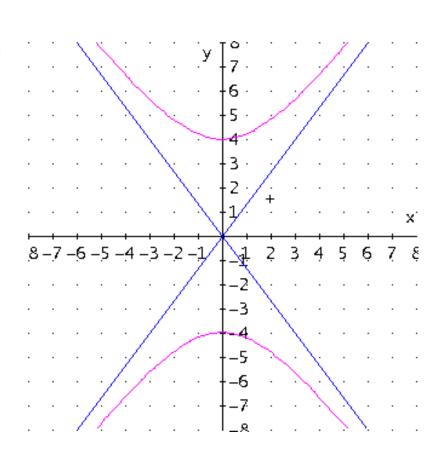
$$b^2 = c^2 - a^2$$

Focos sobre el eje transverso

a < c

Longitud del lado recto:
$$\frac{2b^2}{a}$$

Excentricidad: e = c/a > 1


Ecuaciones

$$\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1$$
Asíntotas: $y = \pm \frac{b}{a}x$

$$y = \pm \frac{b}{a}$$
Asíntotas: $y = \pm \frac{b}{a}x$

$$y = \pm \frac{b}{a}x$$
Algebra Lineal y Geometría

$$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$$

Asíntotas:

$$y = \pm \frac{a}{b} x$$

$$\frac{(x-h)^{2}}{a^{2}} - \frac{(y-k)^{2}}{b^{2}} = 1$$

$$y = 10$$

$$y = 3$$

$$x = 2$$

$$y = 3$$

$$y =$$

Asíntotas:

$$y - k = \pm \frac{b}{a}(x - h)$$

Asíntotas:

$$y - k = \pm \frac{a}{b}(x - h)$$

Esp. Liliana Eva Mata

Para cada hipérbola

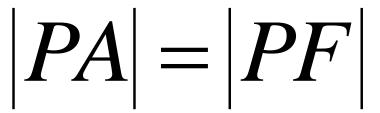
- Escribir las coordenadas del centro, de los focos y de los vértices.
- Longitud del eje transverso, longitud eje imaginario y distancia entre los focos
- Longitud del lado recto
- Excentricidad
- Deducir las condiciones para que la ecuación general de segundo grado represente una hipérbola con ejes paralelos a los coordenados.
- Pasar de la ecuación general a la ecuación canónica y recíprocamente. Enunciar conclusiones

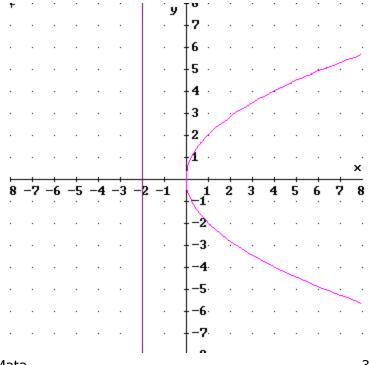
Ecuación General de la cónica de ejes paralelos a los coordenados

$$\square Ax^2+Bxy+Cy^2+Dx+Ey+F=0$$

A y C de distinto signo

$$B=0$$


Parábola


Una parábola es el lugar geométrico de los puntos del plano tales que sus distancias a una recta fija situada en el plano es siempre igual a su distancia de un punto fijo del plano que no pertenece a la recta.

Recta fija: directriz

Punto fijo: foco

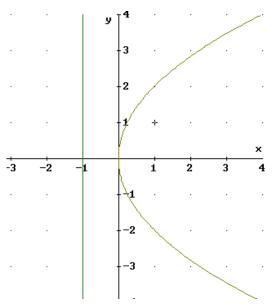
Ecuación vectorial

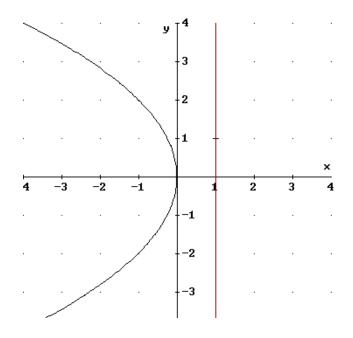
Constantes

p= distancia del foco a la directriz

p/2= distancia del vértice al foco =
 =distancia del vértice a la directriz.

Foco sobre el eje de la parábola

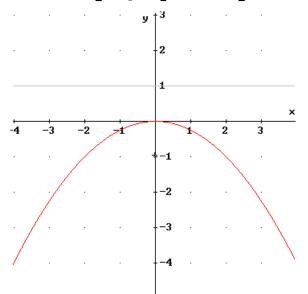

Eje de la parábola coincidente con el eje x

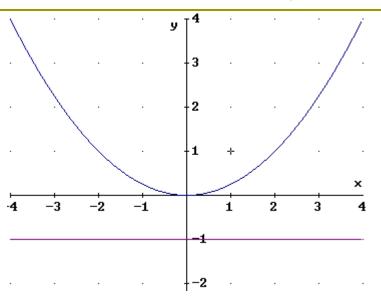

□ Ecuación: $y^2 = \pm 2px$

Vértice: (0;0)

□ Directriz: $\mathbf{x} = \mp \frac{p}{p}$

p Foco: $(\pm p/2; 0)^2$

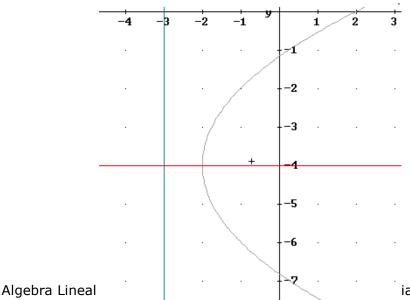

Eje de la parábola coincidente con el eje y

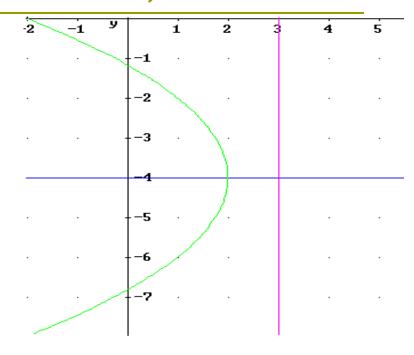

■ Ecuación: $x^2 = \pm 2py$

Vértice: (0;0)

□ Directriz: $y = \mp \frac{p}{2}$

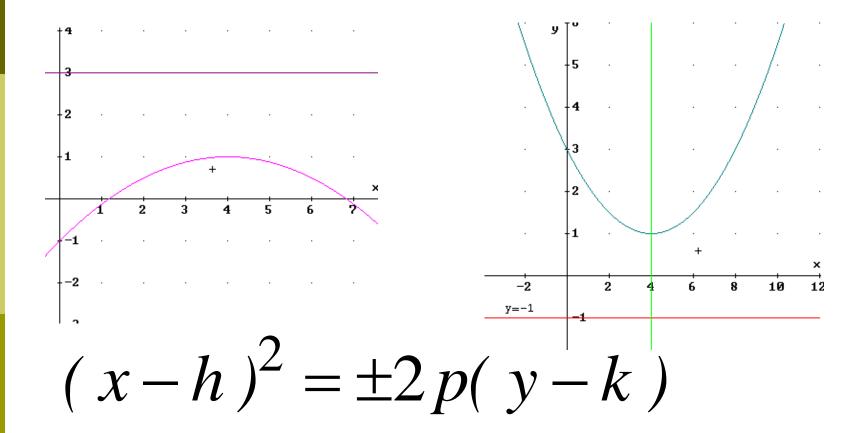
□ Foco: (0;±p/2)




Eje de la parábola paralelo al eje x

$$(y-k)^2 = \pm 2p(x-h)$$

Vértice : (h;k)


$$x = h \mp \frac{P}{2}$$

iana Eva Mata

Eje de la parábola paralelo al eje y

Para cada parábola

- □ Escribir las coordenadas del vértice, del foco.
- Longitud del lado recto
- Excentricidad
- Deducir las condiciones para que la ecuación general de segundo grado represente una parábola con ejes paralelos a los coordenados.
- Pasar de la ecuación general a la ecuación canónica y recíprocamente. Enunciar conclusiones